Advertisement

Prospects for a Globally Effective HIV-1 Vaccine

  • Jean-Louis Excler
    Correspondence
    Address correspondence to: Jean-Louis Excler, U.S. Military HIV Research Program (MHRP), 6720-A Rockledge Drive, Suite 400, Bethesda, MD 20817, USA. Tel.: +63 947 893 7459.
    Affiliations
    U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Bethesda, MD, USA

    Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
    Search for articles by this author
  • Merlin L. Robb
    Affiliations
    U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Bethesda, MD, USA

    Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
    Search for articles by this author
  • Jerome H. Kim
    Affiliations
    U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Bethesda, MD, USA
    Search for articles by this author
      A globally effective vaccine strategy must cope with the broad genetic diversity of HIV and contend with multiple transmission modalities. Understanding correlates of protection and the role of diversity in limiting protective vaccines with those correlates is key. RV144 was the first HIV-1 vaccine trial to demonstrate efficacy against HIV-1 infection. A correlates analysis comparing vaccine-induced immune responses in vaccinated-infected and vaccinated-uninfected volunteers suggested that IgG specific for the V1V2 region of gp120 was associated with reduced risk of HIV-1 infection and that plasma Env IgA was directly correlated with infection risk. RV144 and recent non-human primate (NHP) challenge studies suggest that Env is essential and perhaps sufficient to induce protective antibody responses against mucosally acquired HIV-1. Whether RV144 immune correlates can apply to different HIV vaccines, to populations with different modes and intensity of transmission, or to divergent HIV-1 subtypes remains unknown. Newer prime-boost mosaic and conserved sequence immunization strategies aiming at inducing immune responses of greater breadth and depth as well as the development of immunogens inducing broadly neutralizing antibodies should be actively pursued. Efficacy trials are now planned in heterosexual populations in southern Africa and men who have sex with men in Thailand. Although NHP challenge studies may guide vaccine development, human efficacy trials remain key to answer the critical questions leading to the development of a global HIV-1 vaccine for licensure.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Preventive Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nitayaphan S.
        • Ngauy V.
        • O’Connell R.
        • Excler J.L.
        HIV epidemic in Asia: optimizing and expanding vaccine development.
        Expert Rev Vaccines. 2012; 11: 805-819
        • UNAIDS
        The Gap report.
        Geneva, Switzerland2014
        • McCoy S.I.
        • Kangwende R.A.
        • Padian N.S.
        Behavior change interventions to prevent HIV infection among women living in low and middle income countries: a systematic review.
        AIDS Behav. 2010; 14: 469-482
        • Dutta A.
        • Wirtz A.L.
        • Baral S.
        • Beyrer C.
        • Cleghorn F.R.
        Key harm reduction interventions and their impact on the reduction of risky behavior and HIV incidence among people who inject drugs in low-income and middle-income countries.
        Curr Opin HIV AIDS. 2012; 7: 362-368
        • Wamai R.G.
        • Morris B.J.
        • Bailis S.A.
        • Sokal D.
        • Klausner J.D.
        • Appleton R.
        • et al.
        Male circumcision for HIV prevention: current evidence and implementation in sub-Saharan Africa.
        J Int AIDS Soc. 2011; 14: 49
        • Chi B.H.
        • Adler M.R.
        • Bolu O.
        • Mbori-Ngacha D.
        • Ekouevi D.K.
        • Gieselman A.
        • et al.
        Progress, challenges, and new opportunities for the prevention of mother-to-child transmission of HIV under the US President׳s Emergency Plan for AIDS Relief.
        J Acquir Immune Defic Syndr. 2012; 60: S78-S87
        • Kim S.C.
        • Becker S.
        • Dieffenbach C.
        • Hanewall B.S.
        • Hankins C.
        • Lo Y.R.
        • et al.
        Planning for pre-exposure prophylaxis to prevent HIV transmission: challenges and opportunities.
        J Int AIDS Soc. 2010; 13: 24
        • Grant R.M.
        • Lama J.R.
        • Anderson P.L.
        • McMahan V.
        • Liu A.Y.
        • Vargas L.
        • et al.
        Preexposure chemoprophylaxis for HIV prevention in men who have sex with men.
        N Engl J Med. 2010; 363: 2587-2599
        • Choopanya K.
        • Martin M.
        • Sunthame P.
        • Sangkum U.
        • Mock P.A.
        • Leethochawalit M.
        • et al.
        Antiretroviral prophylaxis for HIV infection in injecting drug users in Bangkok, Thailand (the Bangkok Tenofovir Study): a randomised, double-blind, placebo-controlled phase 3 trial.
        Lancet. 2013; 381: 2083-2090
        • Mastro T.D.
        • Sista N.
        • Abdool-Karim Q.
        ARV-based HIV prevention for women – where we are in 2014.
        J Int AIDS Soc. 2014; 17: 19154
        • Cohen M.S.
        • Holmes C.
        • Padian N.
        • Wolf M.
        • Hirnschall G.
        • Lo Y.R.
        • et al.
        HIV treatment as prevention: how scientific discovery occurred and translated rapidly into policy for the global response.
        Health Aff (Millwood). 2012; 31: 1439-1449
        • Krakower D.
        • Mayer K.H.
        Promising prevention approaches: tenofovir gel and prophylactic use of antiretroviral medications.
        Curr HIV/AIDS Rep. 2011; 8: 241-248
        • Abdool Karim Q.
        • Abdool Karim S.S.
        • Frohlich J.A.
        • Grobler A.C.
        • Baxter C.
        • Mansoor L.E.
        • et al.
        Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women.
        Science. 2010; 329: 1168-1174
        • Grant R.M.
        • Anderson P.L.
        • McMahan V.
        • Liu A.
        • Amico K.R.
        • Mehrotra M.
        • et al.
        Uptake of pre-exposure prophylaxis, sexual practices, and HIV incidence in men and transgender women who have sex with men: a cohort study.
        Lancet Infect Dis. 2014; 14: 820-829
        • Van Damme L.
        • Corneli A.
        • Ahmed K.
        • Agot K.
        • Lombaard J.
        • Kapiga S.
        • et al.
        Preexposure prophylaxis for HIV infection among African women.
        N Engl J Med. 2012; 367: 411-422
        • Fauci A.S.
        • Marston H.D.
        Ending AIDS – is an HIV vaccine necessary?.
        N Engl J Med. 2014; 370: 495-498
        • Beyrer C.
        • Abdool Karim Q.
        The changing epidemiology of HIV in 2013.
        Curr Opin HIV AIDS. 2013; 8: 306-310
        • Beyrer C.
        • Baral S.D.
        • van Griensven F.
        • Goodreau S.M.
        • Chariyalertsak S.
        • Wirtz A.L.
        • et al.
        Global epidemiology of HIV infection in men who have sex with men.
        Lancet. 2012; 380: 367-377
        • Baral S.D.
        • Poteat T.
        • Stromdahl S.
        • Wirtz A.L.
        • Guadamuz T.E.
        • Beyrer C.
        Worldwide burden of HIV in transgender women: a systematic review and meta-analysis.
        Lancet Infect Dis. 2013; 13: 214-222
        • Hemelaar J.
        • Gouws E.
        • Ghys P.D.
        • Osmanov S.
        Global trends in molecular epidemiology of HIV-1 during 2000–2007.
        AIDS. 2011; 25: 679-689
        • Hemelaar J.
        Implications of HIV diversity for the HIV-1 pandemic.
        J Infect. 2013; 66: 391-400
        • Excler J.L.
        • Robb M.L.
        • Kim J.H.
        HIV-1 vaccines: challenges and new perspectives.
        Hum Vaccines Immunother. 2014; 10: 1734-1746
        • Excler J.L.
        • Tomaras G.D.
        • Russell N.D.
        Novel directions in HIV-1 vaccines revealed from clinical trials.
        Curr Opin HIV AIDS. 2013; 8: 421-431
        • Walker B.D.
        • Ahmed R.
        • Plotkin S.
        Moving ahead an HIV vaccine: use both arms to beat HIV.
        Nat Med. 2011; 17: 1194-1195
        • O’Connell R.J.
        • Excler J.L.
        HIV vaccine efficacy and immune correlates of risk.
        Curr HIV Res. 2013; 11: 450-463
        • Barouch D.H.
        • Liu J.
        • Li H.
        • Maxfield L.F.
        • Abbink P.
        • Lynch D.M.
        • et al.
        Vaccine protection against acquisition of neutralization-resistant SIV challenges in rhesus monkeys.
        Nature. 2012; 482: 89-93
        • Barouch D.H.
        • Stephenson K.E.
        • Borducchi E.N.
        • Smith K.
        • Stanley K.
        • McNally A.G.
        • et al.
        Protective efficacy of a global HIV-1 mosaic vaccine against heterologous SHIV challenges in rhesus monkeys.
        Cell. 2013; 155: 531-539
        • Roederer M.
        • Keele B.F.
        • Schmidt S.D.
        • Mason R.D.
        • Welles H.C.
        • Fischer W.
        • et al.
        Immunological and virological mechanisms of vaccine-mediated protection against SIV and HIV.
        Nature. 2014; 505: 502-508
        • Zolla-Pazner S.
        A critical question for HIV vaccine development: which antibodies to induce?.
        Science. 2014; 345: 167-168
        • Mascola J.R.
        HIV/AIDS: allied responses.
        Nature. 2007; 449: 29-30
        • Su B.
        • Moog C.
        Which antibody functions are important for an HIV vaccine?.
        Front Immunol. 2014; 5: 289
        • Excler J.L.
        • Ake J.
        • Robb M.L.
        • Kim J.H.
        • Plotkin S.A.
        Nonneutralizing functional antibodies: a new “old” paradigm for HIV vaccines.
        Clin Vaccine Immunol. 2014; 21: 1023-1036
        • Sarzotti-Kelsoe M.
        • Bailer R.T.
        • Turk E.
        • Lin C.L.
        • Bilska M.
        • Greene K.M.
        • et al.
        Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1.
        J Immunol Methods. 2014; 409: 131-146
        • Pitisuttithum P.
        • Gilbert P.
        • Gurwith M.
        • Heyward W.
        • Martin M.
        • van Griensven F.
        • et al.
        Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand.
        J Infect Dis. 2006; 194: 1661-1671
        • Flynn N.M.
        • Forthal D.N.
        • Harro C.D.
        • Judson F.N.
        • Mayer K.H.
        • Para M.F.
        Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection.
        J Infect Dis. 2005; 191: 654-665
        • Gilbert P.B.
        • Peterson M.L.
        • Follmann D.
        • Hudgens M.G.
        • Francis D.P.
        • Gurwith M.
        • et al.
        Correlation between immunologic responses to a recombinant glycoprotein 120 vaccine and incidence of HIV-1 infection in a phase 3 HIV-1 preventive vaccine trial.
        J Infect Dis. 2005; 191: 666-677
        • Gilbert P.B.
        • Ackers M.L.
        • Berman P.W.
        • Francis D.P.
        • Popovic V.
        • Hu D.J.
        • et al.
        HIV-1 virologic and immunologic progression and initiation of antiretroviral therapy among HIV-1-infected subjects in a trial of the efficacy of recombinant glycoprotein 120 vaccine.
        J Infect Dis. 2005; 192: 974-983
        • Kim J.H.
        • Excler J.L.
        • Michael N.L.
        Lessons from the RV144 Thai phase III HIV-1 vaccine trial and the search for correlates of protection.
        Annu Rev Med. 2015; 66: 423-437
        • Rerks-Ngarm S.
        • Pitisuttithum P.
        • Nitayaphan S.
        • Kaewkungwal J.
        • Chiu J.
        • Paris R.
        • et al.
        Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand.
        N Engl J Med. 2009; 361: 2209-2220
        • Gilbert P.B.
        • Berger J.O.
        • Stablein D.
        • Becker S.
        • Essex M.
        • Hammer S.M.
        • et al.
        Statistical interpretation of the RV144 HIV vaccine efficacy trial in Thailand: a case study for statistical issues in efficacy trials.
        J Infect Dis. 2011; 203: 969-975
        • Robb M.L.
        • Rerks-Ngarm S.
        • Nitayaphan S.
        • Pitisuttithum P.
        • Kaewkungwal J.
        • Kunasol P.
        • et al.
        Risk behaviour and time as covariates for efficacy of the HIV vaccine regimen ALVAC-HIV (vCP1521) and AIDSVAX B/E: a post-hoc analysis of the Thai phase 3 efficacy trial RV 144.
        Lancet Infect Dis. 2012; 12: 531
        • Forthal D.N.
        • Gilbert P.B.
        • Landucci G.
        • Phan T.
        Recombinant gp120 vaccine-induced antibodies inhibit clinical strains of HIV-1 in the presence of Fc receptor-bearing effector cells and correlate inversely with HIV infection rate.
        J Immunol. 2007; 178: 6596-6603
        • Cicala C.
        • Martinelli E.
        • McNally J.P.
        • Goode D.J.
        • Gopaul R.
        • Hiatt J.
        • et al.
        The integrin alpha4beta7 forms a complex with cell-surface CD4 and defines a T-cell subset that is highly susceptible to infection by HIV-1.
        Proc Natl Acad Sci U S A. 2009; 106: 20877-20882
        • Arthos J.
        • Cicala C.
        • Martinelli E.
        • Macleod K.
        • Van Ryk D.
        • Wei D.
        • et al.
        HIV-1 envelope protein binds to and signals through integrin alpha4beta7, the gut mucosal homing receptor for peripheral T cells.
        Nat Immunol. 2008; 9: 301-309
        • Karnasuta C.
        • Paris R.M.
        • Cox J.H.
        • Nitayaphan S.
        • Pitisuttithum P.
        • Thongcharoen P.
        • et al.
        Antibody-dependent cell-mediated cytotoxic responses in participants enrolled in a phase I/II ALVAC-HIV/AIDSVAX B/E prime-boost HIV-1 vaccine trial in Thailand.
        Vaccine. 2005; 23: 2522-2529
        • Bonsignori M.
        • Pollara J.
        • Moody M.A.
        • Alpert M.D.
        • Chen X.
        • Hwang K.K.
        • et al.
        Antibody-dependent cellular cytotoxicity-mediating antibodies from an HIV-1 vaccine efficacy trial target multiple epitopes and preferentially use the VH1 gene family.
        J Virol. 2012; 86: 11521-11532
        • Haynes B.F.
        • Gilbert P.B.
        • McElrath M.J.
        • Zolla-Pazner S.
        • Tomaras G.D.
        • Alam S.M.
        • et al.
        Immune-correlates analysis of an HIV-1 vaccine efficacy trial.
        N Engl J Med. 2012; 366: 1275-1286
        • Zolla-Pazner S.
        • deCamp A.C.
        • Cardozo T.
        • Karasavvas N.
        • Gottardo R.
        • Williams C.
        • et al.
        Analysis of V2 antibody responses induced in vaccinees in the ALVAC/AIDSVAX HIV-1 vaccine efficacy trial.
        PLOS ONE. 2013; 8: e53629
        • Karasavvas N.
        • Billings E.
        • Rao M.
        • Williams C.
        • Zolla-Pazner S.
        • Bailer R.T.
        • et al.
        The Thai Phase III HIV Type 1 Vaccine trial (RV144) regimen induces antibodies that target conserved regions within the V2 loop of gp120.
        AIDS Res Hum Retroviruses. 2012; 28: 1444-1457
        • Zolla-Pazner S.
        • Decamp A.
        • Gilbert P.B.
        • Williams C.
        • Yates N.L.
        • Williams W.T.
        • et al.
        Vaccine-induced IgG antibodies to V1V2 regions of multiple HIV-1 subtypes correlate with decreased risk of HIV-1 infection.
        PLOS ONE. 2014; 9: e87572
        • Rolland M.
        • Edlefsen P.T.
        • Gottardo R.
        • Montefiori D.C.
        • Zolla-Pazner S.
        • Moody A.
        • et al.
        Genetic and immunological evidence for a role of Env-V3 antibodies in the RV144 trial.
        in: Abstract P03.73 LB, AIDS Vaccine 2013, Barcelona, Spain2013
        • Gottardo R.
        • Bailer R.T.
        • Korber B.T.
        • Gnanakaran S.
        • Phillips J.
        • Shen X.
        • et al.
        Plasma IgG to linear epitopes in the V2 and V3 regions of HIV-1 gp120 correlate with a reduced risk of infection in the RV144 vaccine efficacy trial.
        PLOS ONE. 2013; 8: e75665
        • Buchbinder S.P.
        • Mehrotra D.V.
        • Duerr A.
        • Fitzgerald D.W.
        • Mogg R.
        • Li D.
        • et al.
        Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the step study): a double-blind, randomised, placebo-controlled, test-of-concept trial.
        Lancet. 2008; 372: 1881-1893
        • Gray G.E.
        • Allen M.
        • Moodie Z.
        • Churchyard G.
        • Bekker L.G.
        • Nchabeleng M.
        • et al.
        Safety and efficacy of the HVTN 503/Phambili study of a clade-B-based HIV-1 vaccine in South Africa: a double-blind, randomised, placebo-controlled test-of-concept phase 2b study.
        Lancet Infect Dis. 2011; 11: 507-515
        • Hammer S.M.
        • Sobieszczyk M.E.
        • Janes H.
        • Karuna S.T.
        • Mulligan M.J.
        • Grove D.
        • et al.
        Efficacy trial of a DNA/rAd5 HIV-1 preventive vaccine.
        N Engl J Med. 2013; 369: 2083-2092
        • Rolland M.
        • Edlefsen P.T.
        • Larsen B.B.
        • Tovanabutra S.
        • Sanders-Buell E.
        • Hertz T.
        • et al.
        Increased HIV-1 vaccine efficacy against viruses with genetic signatures in Env V2.
        Nature. 2012; 490: 417-420
        • Liao H.X.
        • Bonsignori M.
        • Alam S.M.
        • McLellan J.S.
        • Tomaras G.D.
        • Moody M.A.
        • et al.
        Vaccine induction of antibodies against a structurally heterogeneous site of immune pressure within HIV-1 envelope protein variable regions 1 and 2.
        Immunity. 2013; 38: 176-186
        • Liu P.
        • Yates N.L.
        • Shen X.
        • Bonsignori M.
        • Moody M.A.
        • Liao H.X.
        • et al.
        Infectious virion capture by HIV-1 gp120-specific IgG from RV144 vaccinees.
        J Virol. 2013; 87: 7828-7836
        • Yates N.L.
        • Liao H.X.
        • Fong Y.
        • Decamp A.
        • Vandergrift N.A.
        • Williams W.T.
        • et al.
        Vaccine-induced Env V1–V2 IgG3 correlates with lower HIV-1 infection risk and declines soon after vaccination.
        Sci Transl Med. 2014; 6: 228ra39
        • Chung A.W.
        • Ghebremichael M.
        • Robinson H.
        • Brown E.
        • Choi I.
        • Lane S.
        • et al.
        Polyfunctional Fc-effector profiles mediated by IgG subclass selection distinguish RV144 and VAX003 vaccines.
        Sci Transl Med. 2014; 6: ra38
        • O’Connell R.J.
        • Kim J.H.
        • Excler J.L.
        The HIV-1 gp120 V1V2 loop: structure, function and importance for vaccine development.
        Expert Rev Vaccines. 2014; : 1-12
        • Plotkin S.A.
        • Gilbert P.B.
        Nomenclature for immune correlates of protection after vaccination.
        Clin Infect Dis. 2012; 54: 1615-1617
        • Karasavvas N.
        • Karnasuta C.
        • Ngauy V.
        • Vasan S.
        • Tricharavoj R.
        • de Souza M.S.
        • et al.
        Investigation of antibody responses induced in RV305 a late boost vaccination of HIV-1 uninfected volunteers that participated in RV144, a Thai trial.
        in: P03.68LB, AIDS Vaccine 2013, Barcelona, Spain2013
        • Akapirat S.
        • Karnasuta C.
        • Madnote S.
        • Savadsuk H.
        • Puangkaew J.
        • Rittiroongrad S.
        • et al.
        HIV-specific antibody in rectal secretions following late boosts in RV144 participants (RV305).
        in: OA11.05, HIV R4P, Cape Town, Republic of South Africa2014
        • Moody M.A.
        • Easterhoff D.
        • Gurley T.C.
        • Whitesides J.F.
        • Marshall D.J.
        • Foulger A.
        • et al.
        Induction of antibodies with long variable heavy third complementarity determining regions by repetitive boosting with AIDSVAX® B/E in RV144 vaccinees.
        in: OA12.06 LB, HIV R4P, Cape Town, Republic of South Africa2014
        • Mastelic B.
        • Garcon N.
        • Del Giudice G.
        • Golding H.
        • Gruber M.
        • Neels P.
        • et al.
        Predictive markers of safety and immunogenicity of adjuvanted vaccines.
        Biologicals. 2013; 41: 458-468
        • O’Hagan D.T.
        • Ott G.S.
        • De Gregorio E.
        • Seubert A.
        The mechanism of action of MF59 – an innately attractive adjuvant formulation.
        Vaccine. 2012; 30: 4341-4348
        • Leroux-Roels I.
        • Koutsoukos M.
        • Clement F.
        • Steyaert S.
        • Janssens M.
        • Bourguignon P.
        • et al.
        Strong and persistent CD4+ T-cell response in healthy adults immunized with a candidate HIV-1 vaccine containing gp120, Nef and Tat antigens formulated in three adjuvant systems.
        Vaccine. 2010; 28: 7016-7024
        • Garcon N.
        • Van Mechelen M.
        Recent clinical experience with vaccines using MPL- and QS-21-containing adjuvant systems.
        Expert Rev Vaccines. 2011; 10: 471-486
        • Vaccari M.
        • Gordon S.N.
        • Fourati S.
        • Schifanella L.
        • Cameron M.
        • Keele B.F.
        • et al.
        Adjuvant dependent mucosal V2 responses and RAS activation in vaccine induced protection from SIVmac251 acquisition.
        in: OA25.01. HIV R4P, Cape Town, Republic of South Africa2014
        • McElrath M.J.
        Selection of potent immunological adjuvants for vaccine construction.
        Semin Cancer Biol. 1995; 6: 375-385
        • Rao M.
        • Onkar S.
        • Peachman K.
        • Padilla-Sanchez V.
        • Yamini G.
        • Jobe O.
        • et al.
        Potent V2-specific antibodies induced in humans using liposome-encapsulated HIV-1 gp120 recognize a well-exposed V2 epitope on envelope trimer.
        in: Abstract 2049. Keystone, HIV Vaccines: Adaptive Immunity and Beyond, Banff, Alberta, Canada2014
        • Moon J.J.
        • Suh H.
        • Bershteyn A.
        • Stephan M.T.
        • Liu H.
        • Huang B.
        • et al.
        Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses.
        Nat Mater. 2011; 10: 243-251
        • Zhao L.
        • Seth A.
        • Wibowo N.
        • Zhao C.X.
        • Mitter N.
        • Yu C.
        • et al.
        Nanoparticle vaccines.
        Vaccine. 2014; 32: 327-337
        • Nutt S.L.
        • Tarlinton D.M.
        Germinal center B and follicular helper T cells: siblings, cousins or just good friends?.
        Nat Immunol. 2011; 12: 472-477
        • Moore J.P.
        • Cao Y.
        • Leu J.
        • Qin L.
        • Korber B.
        • Ho D.D.
        Inter- and intraclade neutralization of human immunodeficiency virus type 1: genetic clades do not correspond to neutralization serotypes but partially correspond to gp120 antigenic serotypes.
        J Virol. 1996; 70: 427-444
        • Mascola J.R.
        • Louder M.K.
        • Surman S.R.
        • Vancott T.C.
        • Yu X.F.
        • Bradac J.
        • et al.
        Human immunodeficiency virus type 1 neutralizing antibody serotyping using serum pools and an infectivity reduction assay.
        AIDS Res Hum Retroviruses. 1996; 12: 1319-1328
        • Mascola J.R.
        • Louwagie J.
        • McCutchan F.E.
        • Fischer C.L.
        • Hegerich P.A.
        • Wagner K.F.
        • et al.
        Two antigenically distinct subtypes of human immunodeficiency virus type 1: viral genotype predicts neutralization serotype.
        J Infect Dis. 1994; 169: 48-54
        • Nyambi P.N.
        • Nkengasong J.
        • Lewi P.
        • Andries K.
        • Janssens W.
        • Fransen K.
        • et al.
        Multivariate analysis of human immunodeficiency virus type 1 neutralization data.
        J Virol. 1996; 70: 6235-6243
        • Weber J.
        • Fenyo E.M.
        • Beddows S.
        • Kaleebu P.
        • Bjorndal A.
        Neutralization serotypes of human immunodeficiency virus type 1 field isolates are not predicted by genetic subtype. The WHO Network for HIV Isolation and Characterization.
        J Virol. 1996; 70: 7827-7832
        • Hraber P.
        • Korber B.T.
        • Lapedes A.S.
        • Bailer R.T.
        • Seaman M.S.
        • Gao H.
        • et al.
        Impact of clade, geography, and age of the epidemic on HIV-1 neutralization by antibodies.
        J Virol. 2014; 88: 12623-12643
        • Koff W.C.
        HIV vaccine development: challenges and opportunities towards solving the HIV vaccine-neutralizing antibody problem.
        Vaccine. 2012; 30: 4310-4315
        • Mascola J.R.
        • Haynes B.F.
        HIV-1 neutralizing antibodies: understanding nature׳s pathways.
        Immunol Rev. 2013; 254: 225-244
        • Tomaras G.D.
        • Haynes B.F.
        Lessons from babies: inducing HIV-1 broadly neutralizing antibodies.
        Nat Med. 2014; 20: 583-585
        • Goo L.
        • Chohan V.
        • Nduati R.
        • Overbaugh J.
        Early development of broadly neutralizing antibodies in HIV-1-infected infants.
        Nat Med. 2014; 20: 655-658
        • Simek M.D.
        • Rida W.
        • Priddy F.H.
        • Pung P.
        • Carrow E.
        • Laufer D.S.
        • et al.
        Human immunodeficiency virus type 1 elite neutralizers: individuals with broad and potent neutralizing activity identified by using a high-throughput neutralization assay together with an analytical selection algorithm.
        J Virol. 2009; 83: 7337-7348
        • Stamatatos L.
        • Morris L.
        • Burton D.R.
        • Mascola J.R.
        Neutralizing antibodies generated during natural HIV-1 infection: good news for an HIV-1 vaccine?.
        Nat Med. 2009; 15: 866-870
        • Moore P.L.
        • Crooks E.T.
        • Porter L.
        • Zhu P.
        • Cayanan C.S.
        • Grise H.
        • et al.
        Nature of nonfunctional envelope proteins on the surface of human immunodeficiency virus type 1.
        J Virol. 2006; 80: 2515-2528
        • Nabel G.J.
        Designing tomorrow׳s vaccines.
        N Engl J Med. 2013; 368: 551-560
        • Hessell A.J.
        • Rakasz E.G.
        • Tehrani D.M.
        • Huber M.
        • Weisgrau K.L.
        • Landucci G.
        • et al.
        Broadly neutralizing monoclonal antibodies 2F5 and 4E10 directed against the human immunodeficiency virus type 1 gp41 membrane-proximal external region protect against mucosal challenge by simian-human immunodeficiency virus SHIVBa-L.
        J Virol. 2010; 84: 1302-1313
        • Burton D.R.
        • Hessell A.J.
        • Keele B.F.
        • Klasse P.J.
        • Ketas T.A.
        • Moldt B.
        • et al.
        Limited or no protection by weakly or nonneutralizing antibodies against vaginal SHIV challenge of macaques compared with a strongly neutralizing antibody.
        Proc Natl Acad Sci U S A. 2011; 108: 11181-11186
        • Pegu A.
        • Yang Z.Y.
        • Boyington J.C.
        • Wu L.
        • Ko S.Y.
        • Schmidt S.D.
        • et al.
        Neutralizing antibodies to HIV-1 envelope protect more effectively in vivo than those to the CD4 receptor.
        Sci Transl Med. 2014; 6: 243ra88
        • Rudicell R.S.
        • Kwon Y.D.
        • Ko S.Y.
        • Pegu A.
        • Louder M.K.
        • Georgiev I.S.
        • et al.
        Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivo.
        J Virol. 2014; 88: 12669-12682
        • Moldt B.
        • Rakasz E.G.
        • Schultz N.
        • Chan-Hui P.Y.
        • Swiderek K.
        • Weisgrau K.L.
        • et al.
        Highly potent HIV-specific antibody neutralization in vitro translates into effective protection against mucosal SHIV challenge in vivo.
        Proc Natl Acad Sci U S A. 2012; 109: 18921-18925
        • Kwong P.D.
        Structure-based stabilization of the prefusion closed HIV-1 env trimer [SY05.03].
        in: HIV R4P, Cape Town, Republic of South Africa2014
        • Scheid J.F.
        • Mouquet H.
        • Ueberheide B.
        • Diskin R.
        • Klein F.
        • Oliveira T.Y.
        • et al.
        Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding.
        Science. 2011; 333: 1633-1637
        • Burton D.R.
        • Ahmed R.
        • Barouch D.H.
        • Butera S.T.
        • Crotty S.
        • Godzik A.
        • et al.
        A blueprint for HIV vaccine discovery.
        Cell Host Microbe. 2012; 12: 396-407
        • Kwong P.D.
        • Mascola J.R.
        Human antibodies that neutralize HIV-1: identification, structures, and B cell ontogenies.
        Immunity. 2012; 37: 412-425
        • Walker L.M.
        • Huber M.
        • Doores K.J.
        • Falkowska E.
        • Pejchal R.
        • Julien J.P.
        • et al.
        Broad neutralization coverage of HIV by multiple highly potent antibodies.
        Nature. 2011; 477: 466-470
        • Walker L.M.
        • Phogat S.K.
        • Chan-Hui P.Y.
        • Wagner D.
        • Phung P.
        • Goss J.L.
        • et al.
        Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target.
        Science. 2009; 326: 285-289
        • Wu X.
        • Yang Z.Y.
        • Li Y.
        • Hogerkorp C.M.
        • Schief W.R.
        • Seaman M.S.
        • et al.
        Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1.
        Science. 2010; 329: 856-861
        • Yu L.
        • Guan Y.
        Immunologic basis for long HCDR3s in broadly neutralizing antibodies against HIV-1.
        Front Immunol. 2014; 5: 250
        • McGuire A.T.
        • Dreyer A.M.
        • Carbonetti S.
        • Lippy A.
        • Glenn J.
        • Scheid J.F.
        • et al.
        HIV antibodies, antigen modification regulates competition of broad and narrow neutralizing HIV antibodies.
        Science. 2014; 346: 1380-1383
        • Breden F.
        • Lepik C.
        • Longo N.S.
        • Montero M.
        • Lipsky P.E.
        • Scott J.K.
        Comparison of antibody repertoires produced by HIV-1 infection, other chronic and acute infections, and systemic autoimmune disease.
        PLOS ONE. 2011; 6: e16857
        • Scheid J.F.
        • Mouquet H.
        • Feldhahn N.
        • Seaman M.S.
        • Velinzon K.
        • Pietzsch J.
        • et al.
        Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals.
        Nature. 2009; 458: 636-640
        • Guenaga J.
        • de Val N.
        • Tran K.
        • Feng Y.
        • Satchwell K.
        • Ward A.B.
        • et al.
        Well-ordered trimeric HIV-1 subtype B and C soluble spike mimetics generated by negative selection display native-like properties.
        PLOS Pathog. 2015; 11: e1004570
        • Pugach P.
        • Ozorowski G.
        • Cupo A.
        • Ringe R.
        • Yasmeen A.
        • de Val N.
        • et al.
        A native-like SOSIP.664 trimer based on a HIV-1 subtype B env gene.
        J Virol. 2015; 89: 3380-3395
        • West Jr., A.P.
        • Scharf L.
        • Scheid J.F.
        • Klein F.
        • Bjorkman P.J.
        • Nussenzweig M.C.
        Structural insights on the role of antibodies in HIV-1 vaccine and therapy.
        Cell. 2014; 156: 633-648
        • McCoy L.E.
        • Weiss R.A.
        Neutralizing antibodies to HIV-1 induced by immunization.
        J Exp Med. 2013; 210: 209-223
        • Huang X.
        • Jin W.
        • Hu K.
        • Luo S.
        • Du T.
        • Griffin G.E.
        • et al.
        Highly conserved HIV-1 gp120 glycans proximal to CD4-binding region affect viral infectivity and neutralizing antibody induction.
        Virology. 2012; 423: 97-106
        • Quinnan Jr., G.V.
        • Zhang P.
        • Dong M.
        • Chen H.
        • Feng Y.R.
        • Lewis M.
        • et al.
        Neutralizing antibody responses in macaques induced by human immunodeficiency virus type 1 monovalent or trivalent envelope glycoproteins.
        PLOS ONE. 2013; 8: e59803
        • Kovacs J.M.
        • Nkolola J.P.
        • Peng H.
        • Cheung A.
        • Perry J.
        • Miller C.A.
        • et al.
        HIV-1 envelope trimer elicits more potent neutralizing antibody responses than monomeric gp120.
        Proc Natl Acad Sci U S A. 2012; 109: 12111-12116
        • Bricault C.A.
        • Kovacs J.M.
        • Nkolola J.P.
        • Yusim K.
        • Giorgi E.E.
        • Shields J.L.
        • et al.
        A multivalent clade C HIV-1 Env trimer cocktail elicits a higher magnitude of neutralizing antibodies than any individual component.
        J Virol. 2015; 89: 2507-2519
        • Santra S.
        • Muldoon M.
        • Watson S.
        • Buzby A.
        • Balachandran H.
        • Carlson K.R.
        • et al.
        Breadth of cellular and humoral immune responses elicited in rhesus monkeys by multi-valent mosaic and consensus immunogens.
        Virology. 2012; 428: 121-127
        • Bonsignori M.
        • Alam S.M.
        • Liao H.X.
        • Verkoczy L.
        • Tomaras G.D.
        • Haynes B.F.
        • et al.
        HIV-1 antibodies from infection and vaccination: insights for guiding vaccine design.
        Trends Microbiol. 2012; 20: 532-539
        • Liao H.X.
        • Lynch R.
        • Zhou T.
        • Gao F.
        • Alam S.M.
        • Boyd S.D.
        • et al.
        Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus.
        Nature. 2013; 496: 469-476
        • Doria-Rose N.A.
        • Schramm C.A.
        • Gorman J.
        • Moore P.L.
        • Bhiman J.N.
        • DeKosky B.J.
        • et al.
        Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies.
        Nature. 2014; 509: 55-62
        • Jardine J.
        • Julien J.P.
        • Menis S.
        • Ota T.
        • Kalyuzhniy O.
        • McGuire A.
        • et al.
        Rational HIV immunogen design to target specific germline B cell receptors.
        Science. 2013; 340: 711-716
        • Johnson P.R.
        • Schnepp B.C.
        • Zhang J.
        • Connell M.J.
        • Greene S.M.
        • Yuste E.
        • et al.
        Vector-mediated gene transfer engenders long-lived neutralizing activity and protection against SIV infection in monkeys.
        Nat Med. 2009; 15: 901-906
        • Schnepp B.C.
        • Johnson P.R.
        Adeno-associated virus delivery of broadly neutralizing antibodies.
        Curr Opin HIV AIDS. 2014; 9: 250-256
        • Balazs A.B.
        • Chen J.
        • Hong C.M.
        • Rao D.S.
        • Yang L.
        • Baltimore D.
        Antibody-based protection against HIV infection by vectored immunoprophylaxis.
        Nature. 2012; 481: 81-84
        • Balazs A.B.
        • Ouyang Y.
        • Hong C.M.
        • Chen J.
        • Nguyen S.M.
        • Rao D.S.
        • et al.
        Vectored immunoprophylaxis protects humanized mice from mucosal HIV transmission.
        Nat Med. 2014; 20: 296-300
        • Tongo M.
        • Burgers W.A.
        Challenges in the design of a T cell vaccine in the context of HIV-1 diversity.
        Viruses. 2014; 6: 3968-3990
        • McDermott A.B.
        • Koup R.A.
        CD8(+) T cells in preventing HIV infection and disease.
        AIDS. 2012; 26: 1281-1292
        • McMichael A.J.
        • Haynes B.F.
        Lessons learned from HIV-1 vaccine trials: new priorities and directions.
        Nat Immunol. 2012; 13: 423-427
        • Korber B.T.
        • Letvin N.L.
        • Haynes B.F.
        T-cell vaccine strategies for human immunodeficiency virus, the virus with a thousand faces.
        J Virol. 2009; 83: 8300-8314
        • Parks C.L.
        • Picker L.J.
        • King C.R.
        Development of replication-competent viral vectors for HIV vaccine delivery.
        Curr Opin HIV AIDS. 2013; 8: 402-411
        • Excler J.L.
        • Parks C.L.
        • Ackland J.
        • Rees H.
        • Gust I.D.
        • Koff W.C.
        Replicating viral vectors as HIV vaccines: summary report from the IAVI-sponsored satellite symposium at the AIDS vaccine 2009 conference.
        Biologicals. 2010; 38: 511-521
        • Koup R.A.
        • Graham B.S.
        • Douek D.C.
        The quest for a T cell-based immune correlate of protection against HIV: a story of trials and errors.
        Nat Rev Immunol. 2011; 11: 65-70
        • Liu J.
        • O’Brien K.L.
        • Lynch D.M.
        • Simmons N.L.
        • La Porte A.
        • Riggs A.M.
        • et al.
        Immune control of an SIV challenge by a T-cell-based vaccine in rhesus monkeys.
        Nature. 2009; 457: 87-91
        • McElrath M.J.
        • De Rosa S.C.
        • Moodie Z.
        • Dubey S.
        • Kierstead L.
        • Janes H.
        • et al.
        HIV-1 vaccine-induced immunity in the test-of-concept step study: a case–cohort analysis.
        Lancet. 2008; 372: 1894-1905
        • Rolland M.
        • Tovanabutra S.
        • deCamp A.C.
        • Frahm N.
        • Gilbert P.B.
        • Sanders-Buell E.
        • et al.
        Genetic impact of vaccination on breakthrough HIV-1 sequences from the STEP trial.
        Nat Med. 2011; 17: 366-371
        • Fitzgerald D.W.
        • Janes H.
        • Robertson M.
        • Coombs R.
        • Frank I.
        • Gilbert P.
        • et al.
        An Ad5-vectored HIV-1 vaccine elicits cell-mediated immunity but does not affect disease progression in HIV-1-infected male subjects: results from a randomized placebo-controlled trial (the step study).
        J Infect Dis. 2011; 203: 765-772
        • Li F.
        • Finnefrock A.C.
        • Dubey S.A.
        • Korber B.T.
        • Szinger J.
        • Cole S.
        • et al.
        Mapping HIV-1 vaccine induced T-cell responses: bias towards less-conserved regions and potential impact on vaccine efficacy in the Step study.
        PLOS ONE. 2011; 6: e20479
        • Reynolds M.R.
        • Weiler A.M.
        • Piaskowski S.M.
        • Piatak Jr., M.
        • Robertson H.T.
        • Allison D.B.
        • et al.
        A trivalent recombinant Ad5 gag/pol/nef vaccine fails to protect rhesus macaques from infection or control virus replication after a limiting-dose heterologous SIV challenge.
        Vaccine. 2012; 30: 4465-4475
        • Qureshi H.
        • Ma Z.M.
        • Huang Y.
        • Hodge G.
        • Thomas M.A.
        • DiPasquale J.
        • et al.
        Low-dose penile SIVmac251 exposure of rhesus macaques infected with adenovirus type 5 (Ad5) and then immunized with a replication-defective Ad5-based SIV gag/pol/nef vaccine recapitulates the results of the phase IIb Step trial of a similar HIV-1 vaccine.
        J Virol. 2012; 86: 2239-2250
        • Letvin N.L.
        • Rao S.S.
        • Montefiori D.C.
        • Seaman M.S.
        • Sun Y.
        • Lim S.Y.
        • et al.
        Immune and genetic correlates of vaccine protection against mucosal infection by SIV in monkeys.
        Sci Transl Med. 2011; 3: 81ra36
        • Bakari M.
        • Aboud S.
        • Nilsson C.
        • Francis J.
        • Buma D.
        • Moshiro C.
        • et al.
        Broad and potent immune responses to a low dose intradermal HIV-1 DNA boosted with HIV-1 recombinant MVA among healthy adults in Tanzania.
        Vaccine. 2011; 29: 8417-8428
        • Ratto-Kim S.
        • Currier J.R.
        • Cox J.H.
        • Excler J.L.
        • Valencia-Micolta A.
        • Thelian D.
        • et al.
        Heterologous prime-boost regimens using rAd35 and rMVA vectors elicit stronger cellular immune responses to HIV proteins than homologous regimens.
        PLOS ONE. 2012; 7: e45840
        • Santra S.
        • Liao H.X.
        • Zhang R.
        • Muldoon M.
        • Watson S.
        • Fischer W.
        • et al.
        Mosaic vaccines elicit CD8+ T lymphocyte responses that confer enhanced immune coverage of diverse HIV strains in monkeys.
        Nat Med. 2010; 16: 324-328
        • Barouch D.H.
        • O’Brien K.L.
        • Simmons N.L.
        • King S.L.
        • Abbink P.
        • Maxfield L.F.
        • et al.
        Mosaic HIV-1 vaccines expand the breadth and depth of cellular immune responses in rhesus monkeys.
        Nat Med. 2010; 16: 319-323
        • Letourneau S.
        • Im E.J.
        • Mashishi T.
        • Brereton C.
        • Bridgeman A.
        • Yang H.
        • et al.
        Design and pre-clinical evaluation of a universal HIV-1 vaccine.
        PLOS ONE. 2007; 2: e984
        • Rolland M.
        • Nickle D.C.
        • Mullins J.I.
        HIV-1 group M conserved elements vaccine.
        PLOS Pathog. 2007; 3: e157
        • Liu Y.
        • McNevin J.
        • Rolland M.
        • Zhao H.
        • Deng W.
        • Maenza J.
        • et al.
        Conserved HIV-1 epitopes continuously elicit subdominant cytotoxic T-lymphocyte responses.
        J Infect Dis. 2009; 200: 1825-1833
        • Kulkarni V.
        • Valentin A.
        • Rosati M.
        • Rolland M.
        • Mullins J.I.
        • Pavlakis G.N.
        • et al.
        HIV-1 conserved elements p24CE DNA vaccine induces humoral immune responses with broad epitope recognition in macaques.
        PLOS ONE. 2014; 9: e111085
        • Stephenson K.E.
        • SanMiguel A.
        • Simmons N.L.
        • Smith K.
        • Lewis M.G.
        • Szinger J.J.
        • et al.
        Full-length HIV-1 immunogens induce greater magnitude and comparable breadth of T lymphocyte responses to conserved HIV-1 regions compared with conserved-region-only HIV-1 immunogens in rhesus monkeys.
        J Virol. 2012; 86: 11434-11440
        • Clutton G.
        • Carpov A.
        • Parks C.L.
        • Dean H.J.
        • Montefiori D.C.
        • Hanke T.
        Optimizing parallel induction of HIV type 1-specific antibody and T-cell responses by multicomponent subunit vaccines.
        AIDS. 2014; 28: 2495-2504
        • Ondondo B.
        • Abdul-Jawad S.
        • Bridgeman A.
        • Hanke T.
        Characterization of T-cell responses to conserved regions of the HIV-1 proteome in BALB/c mice.
        Clin Vaccine Immunol. 2014; 21: 1565-1572
        • Koopman G.
        • Beenhakker N.
        • Nieuwenhuis I.
        • Doxiadis G.
        • Mooij P.
        • Drijfhout J.W.
        • et al.
        DNA/long peptide vaccination against conserved regions of SIV induces partial protection against SIVmac251 challenge.
        AIDS. 2013; 27: 2841-2851
        • Hayton E.J.
        • Rose A.
        • Ibrahimsa U.
        • Del Sorbo M.
        • Capone S.
        • Crook A.
        • et al.
        Safety and tolerability of conserved region vaccines vectored by plasmid DNA, simian adenovirus and modified vaccinia virus ankara administered to human immunodeficiency virus type 1-uninfected adults in a randomized, single-blind phase I trial.
        PLOS ONE. 2014; 9: e101591
        • Borthwick N.
        • Ahmed T.
        • Ondondo B.
        • Hayes P.
        • Rose A.
        • Ebrahimsa U.
        • et al.
        Vaccine-elicited human T cells recognizing conserved protein regions inhibit HIV-1.
        Mol Ther. 2014; 22: 464-475
        • Hansen S.G.
        • Ford J.C.
        • Lewis M.S.
        • Ventura A.B.
        • Hughes C.M.
        • Coyne-Johnson L.
        • et al.
        Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine.
        Nature. 2011; 473: 523-527
        • Hansen S.G.
        • Piatak Jr., M.
        • Ventura A.B.
        • Hughes C.M.
        • Gilbride R.M.
        • Ford J.C.
        • et al.
        Immune clearance of highly pathogenic SIV infection.
        Nature. 2013; 502: 100-104
        • Barouch D.H.
        • Michael N.L.
        Accelerating HIV-1 vaccine efficacy trials.
        Cell. 2014; 159: 969-972

      CHORUS Manuscript

      View Open Manuscript