Advertisement

The March Toward Malaria Vaccines

      In 2013 there were an estimated 584,000 deaths and 198 million clinical illnesses due to malaria, the majority in sub-Saharan Africa. Vaccines would be the ideal addition to the existing armamentarium of anti-malaria tools. However, malaria is caused by parasites, and parasites are much more complex in terms of their biology than the viruses and bacteria for which we have vaccines, passing through multiple stages of development in the human host, each stage expressing hundreds of unique antigens. This complexity makes it more difficult to develop a vaccine for parasites than for viruses and bacteria, since an immune response targeting one stage may not offer protection against a later stage, because different antigens are the targets of protective immunity at different stages. Furthermore, depending on the life cycle stage and whether the parasite is extra- or intra-cellular, antibody and/or cellular immune responses provide protection. It is thus not surprising that there is no vaccine on the market for prevention of malaria, or any human parasitic infection. In fact, no vaccine for any disease with this breadth of targets and immune responses exists. In this limited review, we focus on four approaches to malaria vaccines, (1) a recombinant protein with adjuvant vaccine aimed at Plasmodium falciparum (Pf) pre-erythrocytic stages of the parasite cycle (RTS,S/AS01), (2) whole sporozoite vaccines aimed at Pf pre-erythrocytic stages (PfSPZ Vaccine and PfSPZ-CVac), (3) prime boost vaccines that include recombinant DNA, viruses and bacteria, and protein with adjuvant aimed primarily at Pf pre-erythrocytic, but also asexual erythrocytic stages, and (4) recombinant protein with adjuvant vaccines aimed at Pf and Plasmodium vivax sexual erythrocytic and mosquito stages. We recognize that we are not covering all approaches to malaria vaccine development, or most of the critically important work on development of vaccines against P. vivax, the second most important cause of malaria. Progress during the last few years has been significant, and a first generation malaria candidate vaccine, RTS,S/AS01, is under review by the European Medicines Agency (EMA) for its quality, safety and efficacy under article 58, which allows the EMA to give a scientific opinion about products intended exclusively for markets outside of the European Union. However, much work is in progress to optimize malaria vaccines in regard to magnitude and durability of protective efficacy and the financing and practicality of delivery. Thus, we are hopeful that anti-malaria vaccines will soon be important tools in the battle against malaria.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Preventive Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • World Health Organization
        World malaria report 2014.
        World Health Organization, Geneva2014
        • Hoffman S.L.
        • Miller L.H.
        Perspectives on malaria vaccine development.
        in: Hoffman S.L. Malaria vaccine development: a multi-immune response approach. ASM Press, Washington, DC1996: 1-13
        • Alonso P.L.
        • Ballou R.
        • Brown G.
        • Chitnis C.
        • Loucq C.
        • Moorthy V.
        • et al.
        A research agenda for malaria eradication: vaccines.
        PLoS Med. 2011; 8: e1000398
        • Coppi A.
        • Natarajan R.
        • Pradel G.
        • Bennett B.L.
        • James E.R.
        • Roggero M.A.
        • et al.
        The malaria circumsporozoite protein has two functional domains, each with distinct roles as sporozoites journey from mosquito to mammalian host.
        J Exp Med. 2011; 208: 341-356
        • Kumar K.A.
        • Sano G.
        • Boscardin S.
        • Nussenzweig R.S.
        • Nussenzweig M.C.
        • Zavala F.
        • et al.
        The circumsporozoite protein is an immunodominant protective antigen in irradiated sporozoites.
        Nature. 2006; 444: 937-940
        • Egan J.E.
        • Weber J.L.
        • Ballou W.R.
        • Hollingdale M.R.
        • Majarian W.R.
        • Gordon D.M.
        • et al.
        Efficacy of murine malaria sporozoite vaccines: implications for human vaccine development.
        Science. 1987; 236: 453-456
        • Schofield L.
        • Villaquiran J.
        • Ferreira A.
        • Schellekens H.
        • Nussenzweig R.S.
        • Nussenzweig V.
        Gamma-interferon, CD8+ T cells and antibodies required for immunity to malaria sporozoites.
        Nature. 1987; 330: 664-666
        • Ballou W.R.
        • Hoffman S.L.
        • Sherwood J.A.
        • Hollingdale M.R.
        • Neva F.A.
        • Hockmeyer W.T.
        • et al.
        Safety and efficacy of a recombinant DNA Plasmodium falciparum sporozoite vaccine.
        Lancet. 1987; 1: 1277-1281
        • Herrington D.A.
        • Clyde D.F.
        • Losonsky G.
        • Cortesia M.
        • Murphy J.R.
        • Davis J.
        • et al.
        Safety and immunogenicity in man of a synthetic peptide malaria vaccine against Plasmodium falciparum sporozoites.
        Nature. 1987; 328: 257-259
        • Gordon D.M.
        • McGovern T.W.
        • Krzych U.
        • Cohen J.C.
        • Schneider I.
        • LaChance R.
        • et al.
        Safety, immunogenicity, and efficacy of a recombinantly produced Plasmodium falciparum circumsporozoite protein-hepatitis B surface antigen subunit vaccine.
        J Infect Dis. 1995; 171: 1576-1585
        • Stoute J.A.
        • Slaoui M.
        • Heppner D.G.
        • Momin P.
        • Kester K.E.
        • Desmons P.
        • et al.
        A preliminary evaluation of a recombinant circumsporozoite protein vaccine against Plasmodium falciparum malaria.
        N Engl J Med. 1997; 336: 86-91
        • Kester K.E.
        • McKinney D.A.
        • Tornieporth N.
        • Ockenhouse C.F.
        • Heppner D.G.
        • Hall T.
        • et al.
        Efficacy of recombinant circumsporozoite protein vaccine regimens against experimental Plasmodium falciparum malaria.
        J Infect Dis. 2001; 183: 640-647
        • Kester K.E.
        • Cummings J.F.
        • Ofori-Anyinam O.
        • Ockenhouse C.F.
        • Krzych U.
        • Moris P.
        • et al.
        Randomized, double-blind, phase 2a trial of falciparum malaria vaccines RTS,S/AS01B and RTS,S/AS02A in malaria-naive adults: safety, efficacy, and immunologic associates of protection.
        J Infect Dis. 2009; 200: 337-346
        • Garcon N.
        • Chomez P.
        • Van Mechelen M.
        GlaxoSmithKline adjuvant systems in vaccines: concepts, achievements and perspectives.
        Expert Rev Vaccines. 2007; 6: 723-739
        • White M.T.
        • Bejon P.
        • Olotu A.
        • Griffin J.T.
        • Riley E.M.
        • Kester K.E.
        • et al.
        The relationship between RTS,S vaccine-induced antibodies, CD4(+) T cell responses and protection against Plasmodium falciparum infection.
        PLOS ONE. 2013; 8: e61395
        • White M.T.
        • Bejon P.
        • Olotu A.
        • Griffin J.T.
        • Bojang K.
        • Lusingu J.
        • et al.
        A combined analysis of immunogenicity, antibody kinetics and vaccine efficacy from phase 2 trials of the RTS,S malaria vaccine.
        BMC Med. 2014; 12: 117
        • Agnandji S.T.
        • Asante K.P.
        • Lyimo J.
        • Vekemans J.
        • Soulanoudjingar S.S.
        • Owusu R.
        • et al.
        Evaluation of the safety and immunogenicity of the RTS,S/AS01E malaria candidate vaccine when integrated in the expanded program of immunization.
        J Infect Dis. 2010; 202: 1076-1087
        • Asante K.P.
        • Abdulla S.
        • Agnandji S.
        • Lyimo J.
        • Vekemans J.
        • Soulanoudjingar S.
        • et al.
        Safety and efficacy of the RTS,S/AS01(E) candidate malaria vaccine given with expanded-programme-on-immunisation vaccines: 19 month follow-up of a randomised, open-label, phase 2 trial.
        Lancet Infect Dis. 2011; 11: 741-749
        • Leach A.
        • Vekemans J.
        • Lievens M.
        • Ofori-Anyinam O.
        • Cahill C.
        • Owusu-Agyei S.
        • et al.
        Design of a phase III multicenter trial to evaluate the efficacy of the RTS,S/AS01 malaria vaccine in children across diverse transmission settings in Africa.
        Malar J. 2011; 10: 224
        • Moorthy V.S.
        • Reed Z.
        • Smith P.G.
        MALVAC 2008: measures of efficacy of malaria vaccines in phase 2b and phase 3 trials – scientific, regulatory and public health perspectives.
        Vaccine. 2009; 27: 624-628
        • Agnandji S.T.
        • Lell B.
        • Soulanoudjingar S.S.
        • Fernandes J.F.
        • Abossolo B.P.
        • Conzelmann C.
        • et al.
        First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children.
        N Engl J Med. 2011; 365: 1863-1875
        • Agnandji S.
        • Lell B.
        • Fernandes J.
        • Abossolo B.
        • Methogo B.
        • Kabwende A.
        • et al.
        A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants.
        N Engl J Med. 2012; 367: 2284-2295
        • RTSS Clinical Trials Partnership
        Efficacy and safety of the RTS,S/AS01 malaria vaccine during 18 months after vaccination: a phase 3 randomized, controlled trial in children and young infants at 11 African sites.
        PLoS Med. 2014; 11: e1001685
        • Olotu A.
        • Fegan G.
        • Wambua J.
        • Nyangweso G.
        • Awuondo K.O.
        • Leach A.
        • et al.
        Four-year efficacy of RTS,S/AS01E and its interaction with malaria exposure.
        N Engl J Med. 2013; 368: 1111-1120
        • RTSS Clinical Trials Partnership
        Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial.
        Lancet. 2015; 386: 31-45
        • Clyde D.F.
        • Most H.
        • McCarthy V.C.
        • Vanderberg J.P.
        Immunization of man against sporozoite-induced falciparum malaria.
        Am J Med Sci. 1973; 266: 169-177
        • Rieckmann K.H.
        • Carson P.E.
        • Beaudoin R.L.
        • Cassells J.S.
        • Sell K.W.
        Sporozoite induced immunity in man against an Ethiopian strain of Plasmodium falciparum.
        Trans R Soc Trop Med Hyg. 1974; 68: 258-259
        • Hoffman S.L.
        • Goh L.M.
        • Luke T.C.
        • Schneider I.
        • Le T.P.
        • Doolan D.L.
        • et al.
        Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites.
        J Infect Dis. 2002; 185: 1155-1164
        • Nussenzweig R.S.
        • Vanderberg J.
        • Most H.
        • Orton C.
        Protective immunity produced by the injection of X-irradiated sporozoites of Plasmodium berghei.
        Nature. 1967; 216: 160-162
        • Epstein J.E.
        • Tewari K.
        • Lyke K.E.
        • Sim B.K.
        • Billingsley P.F.
        • Laurens M.B.
        • et al.
        Live attenuated malaria vaccine designed to protect through hepatic CD8+ T cell immunity.
        Science. 2011; 334: 475-480
        • Luke T.C.
        • Hoffman S.L.
        Rationale and plans for developing a non-replicating, metabolically active, radiation-attenuated Plasmodium falciparum sporozoite vaccine.
        J Exp Biol. 2003; 206: 3803-3808
        • Seder R.A.
        • Chang L.J.
        • Enama M.E.
        • Zephir K.L.
        • Sarwar U.N.
        • Gordon I.J.
        • et al.
        Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine.
        Science. 2013; 341: 1359-1365
        • Roestenberg M.
        • McCall M.
        • Hopman J.
        • Wiersma J.
        • Luty A.J.
        • van Gemert G.J.
        • et al.
        Protection against a malaria challenge by sporozoite inoculation.
        N Engl J Med. 2009; 361: 468-477
        • Roestenberg M.
        • Teirlinck A.C.
        • McCall M.B.
        • Teelen K.
        • Makamdop K.N.
        • Wiersma J.
        • et al.
        Long-term protection against malaria after experimental sporozoite inoculation: an open-label follow-up study.
        Lancet. 2011; 377: 1770-1776
        • Nganou-Makamdop K.
        • van Gemert G.J.
        • Arens T.
        • Hermsen C.C.
        • Sauerwein R.W.
        Long term protection after immunization with P. berghei sporozoites correlates with sustained IFNgamma responses of hepatic CD8+ memory T cells.
        PLoS ONE. 2012; 7: e36508
        • Bijker E.M.
        • Teirlinck A.C.
        • Schats R.
        • van Gemert G.J.
        • van de Vegte-Bolmer M.
        • van Lieshout L.
        • et al.
        Cytotoxic markers associate with protection against malaria in human volunteers immunized with Plasmodium falciparum sporozoites.
        J Infect Dis. 2014; 210: 1605-1615
        • Hoffman S.L.
        • Billingsley P.
        • James E.
        • Richman A.
        • Loyevsky M.
        • Li T.
        • et al.
        Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria.
        Hum Vaccines. 2010; 6: 97-106
        • Roestenberg M.
        • Bijker E.M.
        • Sim B.K.
        • Billingsley P.F.
        • James E.R.
        • Bastiaens G.J.
        • et al.
        Controlled human malaria infections by intradermal injection of cryopreserved Plasmodium falciparum sporozoites.
        Am J Trop Med Hyg. 2013; 88: 5-13
        • Sheehy S.H.
        • Spencer A.J.
        • Douglas A.D.
        • Sim B.K.
        • Longley R.J.
        • Edwards N.J.
        • et al.
        Optimising controlled human malaria infection studies using cryopreserved parasites administered by needle and syringe.
        PLOS ONE. 2013; 8: e65960
        • Shekalaghe S.
        • Rutaihwa M.
        • Billingsley P.F.
        • Chemba M.
        • Daubenberger C.A.
        • James E.R.
        • et al.
        Controlled human malaria infection of Tanzanians by intradermal injection of aseptic, purified, cryopreserved Plasmodium falciparum sporozoites.
        Am J Trop Med Hyg. 2014; 91: 471-480
        • Hodgson S.H.
        • Juma E.A.
        • Salim A.
        • Magiri C.
        • Kimani D.
        • Njenga D.
        • et al.
        Evaluating controlled human malaria infection in Kenyan adults with varying degrees of prior exposure to Plasmodium falciparum using sporozoites administered by intramuscular injection.
        Front Microbiol. 2014; : 2014
        • Mordmüller B.
        • Supan C.
        • Sim K.L.
        • Gómez-Pérez G.P.
        • Ospina Salazar C.L.
        • Held J.
        • et al.
        Direct venous inoculation of Plasmodium falciparum sporozoites for controlled human malaria infection: a dose-finding trial in two centres.
        Malar J. 2015; 14: 117
      1. Bastiaens GJ, van Meer MP, Scholzen A, Obiero JM, Vatanshenassan M, van Grinsven T, et al. Safety, immunogenicity and protective efficacy after intradermal immunization with aseptic, purified, cryopreserved Plasmodium falciparum sporozoites in volunteers under chloroquine prophylaxis: a randomized controlled trial, unpublished results.

        • Garcia C.R.
        • Manzi F.
        • Tediosi F.
        • Hoffman S.L.
        • James E.R.
        Comparative cost models of a liquid nitrogen vapor phase (LNVP) cold chain-distributed cryopreserved malaria vaccine vs. a conventional vaccine.
        Vaccine. 2013; 31: 380-386
        • Bijker E.M.
        • Bastiaens G.J.
        • Teirlinck A.C.
        • van Gemert G.J.
        • Graumans W.
        • van de Vegte-Bolmer M.
        • et al.
        Protection against malaria after immunization by chloroquine prophylaxis and sporozoites is mediated by preerythrocytic immunity.
        Proc Natl Acad Sci USA. 2013; 110: 7862-7867
        • Gómez-Pérez G.P.
        • Legarda A.
        • Muñoz J.
        • Sim B.K.L.
        • Ballester M.R.
        • Dobaño C.
        • et al.
        Controlled human malaria infection by intramuscular and direct venous inoculation of cryopreserved Plasmodium falciparum sporozoites in malaria-naïve volunteers: effect of injection volume and dose on infectivity rates.
        Malar J. 2015; 14: 306
        • Aly A.S.
        • Vaughan A.M.
        • Kappe S.H.
        Malaria parasite development in the mosquito and infection of the mammalian host.
        Annu Rev Microbiol. 2009; 63: 195-221
        • van Buskirk K.M.
        • O’Neill M.T.
        • De La Vega P.
        • Maier A.G.
        • Krzych U.
        • Williams J.
        • et al.
        Preerythrocytic, live-attenuated Plasmodium falciparum vaccine candidates by design.
        Proc Natl Acad Sci USA. 2009; 106: 13004-13009
        • Spring M.
        • Murphy J.
        • Nielsen R.
        • Dowler M.
        • Bennett J.W.
        • Zarling S.
        • et al.
        First-in-human evaluation of genetically attenuated Plasmodium falciparum sporozoites administered by bite of Anopheles mosquitoes to adult volunteers.
        Vaccine. 2013; 31: 4975-4983
        • Annoura T.
        • Ploemen I.H.
        • van Schaijk B.C.
        • Sajid M.
        • Vos M.W.
        • van Gemert G.J.
        • et al.
        Assessing the adequacy of attenuation of genetically modified malaria parasite vaccine candidates.
        Vaccine. 2012; 30: 2662-2670
        • Mikolajczak S.A.
        • Lakshmanan V.
        • Fishbaugher M.
        • Camargo N.
        • Harupa A.
        • Kaushansky A.
        • et al.
        A next-generation genetically attenuated Plasmodium falciparum parasite created by triple gene deletion.
        Mol Ther. 2014; 22: 1707-1715
        • Annoura T.
        • van Schaijk B.C.
        • Ploemen I.H.
        • Sajid M.
        • Lin J.W.
        • Vos M.W.
        • et al.
        Two Plasmodium 6-Cys family-related proteins have distinct and critical roles in liver-stage development.
        FASEB J. 2014; 28: 2158-2170
        • van Schaijk B.C.
        • Ploemen I.H.
        • Annoura T.
        • Vos M.W.
        • Lander F.
        • van Gemert G.J.
        • et al.
        A genetically attenuated malaria vaccine candidate based on gene-deficient sporozoites.
        Elife. 2014; : 3
        • Sedegah M.
        • Hedstrom R.
        • Hobart P.
        • Hoffman S.L.
        Protection against malaria by immunization with plasmid DNA encoding circumsporozoite protein.
        Proc Natl Acad Sci USA. 1994; 91: 9866-9870
        • Wang R.
        • Doolan D.L.
        • Le T.P.
        • Hedstrom R.C.
        • Coonan K.M.
        • Charoenvit Y.
        • et al.
        Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine.
        Science. 1998; 282: 476-480
        • Richie T.L.
        • Charoenvit Y.
        • Wang R.
        • Epstein J.E.
        • Hedstrom R.C.
        • Kumar S.
        • et al.
        Clinical trial in healthy malaria-naïve adults to evaluate the safety, tolerability, immunogenicity and efficacy of MuStDO5, a five-gene, sporozoite/hepatic stage Plasmodium falciparum DNA vaccine combined with escalating dose human GM-CSF DNA.
        Hum Vaccines Immunother. 2012; 8: 1564-1584
        • Krause A.
        • Joh J.H.
        • Hackett N.R.
        • Roelvink P.W.
        • Bruder J.T.
        • Wickham T.J.
        • et al.
        Epitopes expressed in different adenovirus capsid proteins induce different levels of epitope-specific immunity.
        J Virol. 2006; 80: 5523-5530
        • Ewer K.J.
        • O’Hara G.A.
        • Duncan C.J.
        • Collins K.A.
        • Sheehy S.H.
        • Reyes-Sandoval A.
        • et al.
        Protective CD8(+) T-cell immunity to human malaria induced by chimpanzee adenovirus-MVA immunisation.
        Nat Commun. 2013; 4: 2836
        • Tamminga C.
        • Sedegah M.
        • Maiolatesi S.
        • Fedders C.
        • Reyes S.
        • Reyes A.
        • et al.
        Human adenovirus 5-vectored Plasmodium falciparum NMRC-M3V-Ad-PfCA vaccine encoding CSP and AMA1 is safe, well-tolerated and immunogenic but does not protect against controlled human malaria infection.
        Hum Vaccine Immunother. 2013; 9: 2165-2177
        • Li S.
        • Rodrigues M.
        • Rodriguez D.
        • Rodriguez J.R.
        • Esteban M.
        • Palese P.
        • et al.
        Priming with recombinant influenza virus followed by administration of recombinant vaccinia virus induces CD8+ T-cell-mediated protective immunity against malaria.
        Proc Natl Acad Sci USA. 1993; 90: 5214-5218
        • Plebanski M.
        • Gilbert S.C.
        • Schneider J.
        • Hannan C.M.
        • Layton G.
        • Blanchard T.
        • et al.
        Protection from Plasmodium berghei infection by priming and boosting T cells to a single class I-restricted epitope with recombinant carriers suitable for human use.
        J Immunol. 1998; 28: 4345-4355
        • Sedegah M.
        • Jones T.R.
        • Kaur M.
        • Hedstrom R.
        • Hobart P.
        • Tine J.A.
        • et al.
        Boosting with recombinant vaccinia increases immunogenicity and protective efficacy of malaria DNA vaccine.
        Proc Natl Acad Sci USA. 1998; 95: 7648-7653
        • Reyes-Sandoval A.
        • Rollier C.S.
        • Milicic A.
        • Bauza K.
        • Cottingham M.G.
        • Tang C.K.
        • et al.
        Mixed vector immunization with recombinant adenovirus and MVA can improve vaccine efficacy while decreasing antivector immunity.
        Mol Ther. 2012; 20: 1633-1647
        • Rogers W.O.
        • Weiss W.R.
        • Kumar A.
        • Aguiar J.C.
        • Tine J.A.
        • Gwadz R.
        • et al.
        Protection of rhesus macaques against lethal Plasmodium knowlesi malaria by a heterologous DNA priming and poxvirus boosting immunization regimen.
        Infect Immun. 2002; 70: 4329-4335
        • Jiang G.
        • Shi M.
        • Conteh S.
        • Richie N.
        • Banania G.
        • Geneshan H.
        • et al.
        Sterile protection against Plasmodium knowlesi in rhesus monkeys from a malaria vaccine: comparison of heterologous prime boost strategies.
        PLoS ONE. 2009; 4: e6559
        • Epstein J.E.
        • Charoenvit Y.
        • Kester K.E.
        • Wang R.
        • Newcomer R.
        • Fitzpatrick S.
        • et al.
        Safety, tolerability, and antibody responses in humans after sequential immunization with a PfCSP DNA vaccine followed by the recombinant protein vaccine RTS,S/AS02A.
        Vaccine. 2004; 22: 1592-1603
        • Wang R.
        • Epstein J.
        • Charoenvit Y.
        • Baraceros F.M.
        • Rahardjo N.
        • Gay T.
        • et al.
        Induction in humans of CD8+ and CD4+ T cell and antibody responses by sequential immunization with malaria DNA and recombinant protein.
        J Immunol. 2004; 172: 5561-5569
        • McConkey S.J.
        • Reece W.H.
        • Moorthy V.S.
        • Webster D.
        • Dunachie S.
        • Butcher G.
        • et al.
        Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans.
        Nat Med. 2003; 9: 729-735
        • Sedegah M.
        • Hollingdale M.R.
        • Farooq F.
        • Ganeshan H.
        • Belmonte M.
        • Kim Y.
        • et al.
        Sterile immunity to malaria after DNA prime/adenovirus boost immunization is associated with effector memory CD8+ T cells targeting AMA1 class I epitopes.
        PLOS ONE. 2014; 9: e106241
        • Chuang I.
        • Sedegah M.
        • Cicatelli S.
        • Spring M.
        • Polhemus M.
        • Tamminga C.
        • et al.
        DNA prime/adenovirus boost malaria vaccine encoding P. falciparum CSP and AMA1 induces sterile protection associated with cell-mediated immunity.
        PLOS ONE. 2013; 8: e55571
        • O’Hara G.A.
        • Duncan C.J.
        • Ewer K.J.
        • Collins K.A.
        • Elias S.C.
        • Halstead F.D.
        • et al.
        Clinical assessment of a recombinant simian adenovirus ChAd63: a potent new vaccine vector.
        J Infect Dis. 2012; 205: 772-781
        • Hodgson S.H.
        • Ewer K.J.
        • Bliss C.M.
        • Edwards N.J.
        • Rampling T.
        • Anagnostou N.A.
        • et al.
        Evaluation of the efficacy of ChAd63-MVA vectored vaccines expressing circumsporozoite protein and ME-TRAP against controlled human malaria infection in malaria-naive individuals.
        J Infect Dis. 2014; 211: 1076-1086
        • Sheehy S.H.
        • Duncan C.J.
        • Elias S.C.
        • Choudhary P.
        • Biswas S.
        • Halstead F.D.
        • et al.
        ChAd63-MVA-vectored blood-stage malaria vaccines targeting MSP1 and AMA1: assessment of efficacy against mosquito bite challenge in humans.
        Mol Ther. 2012; 20: 2355-2368
        • Pham N.L.
        • Pewe L.L.
        • Fleenor C.J.
        • Langlois R.A.
        • Legge K.L.
        • Badovinac V.P.
        • et al.
        Exploiting cross-priming to generate protective CD8 T-cell immunity rapidly.
        Proc Natl Acad Sci USA. 2010; 107: 12198-12203
        • Schmidt N.W.
        • Butler N.S.
        • Harty J.T.C.D8
        T cell immunity to Plasmodium permits generation of protective antibodies after repeated sporozoite challenge.
        Vaccine. 2009; 27: 6103-6106
        • Neuenhahn M.
        • Kerksiek K.M.
        • Nauerth M.
        • Suhre M.H.
        • Schiemann M.
        • Gebhardt F.E.
        • et al.
        CD8alpha+ dendritic cells are required for efficient entry of Listeria monocytogenes into the spleen.
        Immunity. 2006; 25: 619-630
        • Le D.T.
        • Brockstedt D.G.
        • Nir-Paz R.
        • Hampl J.
        • Mathur S.
        • Nemunaitis J.
        • et al.
        A live-attenuated Listeria vaccine (ANZ-100) and a live-attenuated Listeria vaccine expressing mesothelin (CRS-207) for advanced cancers: phase I studies of safety and immune induction.
        Clin Cancer Res. 2012; 18: 858-868
        • Wood L.M.
        • Paterson Y.
        Attenuated Listeria monocytogenes: a powerful and versatile vector for the future of tumor immunotherapy.
        Front Cell Infect Microbiol. 2014; 4: 51
        • Angov E.
        • Hillier C.J.
        • Kincaid R.L.
        • Lyon J.A.
        Heterologous protein expression is enhanced by harmonizing the codon usage frequencies of the target gene with those of the expression host.
        PLoS ONE. 2008; 3: e2189
        • Narum D.L.
        • Kumar S.
        • Rogers W.O.
        • Fuhrmann S.R.
        • Liang H.
        • Oakley M.
        • et al.
        Codon optimization of gene fragments encoding Plasmodium falciparum merzoite proteins enhances DNA vaccine protein expression and immunogenicity in mice.
        Infect Immun. 2001; 69: 7250-7253
        • Terheggen U.
        • Drew D.R.
        • Hodder A.N.
        • Cross N.J.
        • Mugyenyi C.K.
        • Barry A.E.
        • et al.
        Limited antigenic diversity of Plasmodium falciparum apical membrane antigen 1 supports the development of effective multi-allele vaccines.
        BMC Med. 2014; 12: 183
        • Dobano C.
        • Widera G.
        • Rabussay D.
        • Doolan D.L.
        Enhancement of antibody and cellular immune responses to malaria DNA vaccines by in vivo electroporation.
        Vaccine. 2007; 25: 6635-6645
        • Bruder J.T.
        • Semenova E.
        • Chen P.
        • Limbach K.
        • Patterson N.B.
        • Stefaniak M.E.
        • et al.
        Modification of Ad5 hexon hypervariable regions circumvents pre-existing Ad5 neutralizing antibodies and induces protective immune responses.
        PLoS ONE. 2012; 7: e33920
        • Hutchings C.L.
        • Birkett A.J.
        • Moore A.C.
        • Hill A.V.
        Combination of protein and viral vaccines induces potent cellular and humoral immune responses and enhanced protection from murine malaria challenge.
        Infect Immun. 2007; 75: 5819-5826
        • Draper S.J.
        • Biswas S.
        • Spencer A.J.
        • Remarque E.J.
        • Capone S.
        • Naddeo M.
        • et al.
        Enhancing blood-stage malaria subunit vaccine immunogenicity in rhesus macaques by combining adenovirus, poxvirus, and protein-in-adjuvant vaccines.
        J Immunol. 2010; 185: 7583-7595
        • Biswas S.
        • Choudhary P.
        • Elias S.C.
        • Miura K.
        • Milne K.H.
        • de Cassan S.C.
        • et al.
        Assessment of humoral immune responses to blood-stage malaria antigens following ChAd63-MVA immunization, controlled human malaria infection and natural exposure.
        PLOS ONE. 2014; 9: e107903
        • Hodgson S.H.
        • Choudhary P.
        • Elias S.C.
        • Milne K.H.
        • Rampling T.W.
        • Biswas S.
        • et al.
        Combining viral vectored and protein-in-adjuvant vaccines against the blood-stage malaria antigen AMA1: report on a phase 1a clinical trial.
        Mol Ther. 2014; 22: 2142-2154
        • Reddy K.S.
        • Pandey A.K.
        • Singh H.
        • Sahar T.
        • Emmanuel A.
        • Chitnis C.E.
        • et al.
        Bacterially expressed full-length recombinant Plasmodium falciparum RH5 protein binds erythrocytes and elicits potent strain-transcending parasite-neutralizing antibodies.
        Infect Immun. 2014; 82: 152-164
        • Duffy P.E.
        • Sahu T.
        • Akue A.
        • Milman N.
        • Anderson C.
        Pre-erythrocytic malaria vaccines: identifying the targets.
        Expert Rev Vaccines. 2012; 11: 1261-1280
        • Gwadz R.W.
        • Carter R.
        • Green I.
        Gamete vaccines and transmission-blocking immunity in malaria.
        Bull World Health Organ. 1979; 57: 175-180
        • Gwadz R.W.
        Successful immunization against the sexual stages of Plasmodium gallinaceum.
        Science. 1976; 193: 1150-1151
        • Carter R.
        • Chen D.H.
        Malaria transmission blocked by immunisation with gametes of the malaria parasite.
        Nature. 1976; 263: 57-60
        • Dinglasan R.R.
        • Kalume D.E.
        • Kanzok S.M.
        • Ghosh A.K.
        • Muratova O.
        • Pandey A.
        • et al.
        Disruption of Plasmodium falciparum development by antibodies against a conserved mosquito midgut antigen.
        Proc Natl Acad Sci USA. 2007; 104: 13461-13466
        • Carter R.
        • Miller L.H.
        • Rener J.
        • Kaushal D.C.
        • Kumar N.
        • Graves P.M.
        • et al.
        Target antigens of malaria transmission blocking immunity.
        Philos Trans R Soc Lond Ser B: Biol Sci. 1984; 307: 201-213
        • Rener J.
        • Carter R.
        • Rosenberg Y.
        • Miller L.H.
        Anti-gamete monoclonal antibodies synergistically block transmission of malaria by preventing fertilization in the mosquito.
        Proc Natl Acad Sci USA. 1980; 77: 6797-6799
        • Kaushal D.C.
        • Carter R.
        • Rener J.
        • Grotendorst C.A.
        • Miller L.H.
        • Howard R.J.
        Monoclonal antibodies against surface determinants on gametes of Plasmodium gallinaceum block transmission of malaria parasites to mosquitoes.
        J Immunol. 1983; 131: 2557-2562
        • Ockenhouse C.F.
        • Sun P.F.
        • Lanar D.E.
        • Wellde B.T.
        • Hall B.T.
        • Kester K.
        • et al.
        Phase I/IIa safety, immunogenicity and efficacy of NYVAC-Pf7, a pox-vectored, multiantigen, multistage vaccine candidate for Plasmodium falciparum malaria.
        J Infect Dis. 1998; 177: 1664-1673
        • Gozar M.M.
        • Price V.L.
        • Kaslow D.C.
        Saccharomyces cerevisiae-secreted fusion proteins Pfs25 and Pfs28 elicit potent Plasmodium falciparum transmission-blocking antibodies in mice.
        Infect Immun. 1998; 66: 59-64
        • Gozar M.M.
        • Muratova O.
        • Keister D.B.
        • Kensil C.R.
        • Price V.L.
        • Kaslow D.C.
        Plasmodium falciparum: immunogenicity of alum-adsorbed clinical-grade TBV25-28, a yeast-secreted malaria transmission-blocking vaccine candidate.
        Exp Parasitol. 2001; 97: 61-69
        • Malkin E.M.
        • Durbin A.P.
        • Diemert D.J.
        • Sattabongkot J.
        • Wu Y.
        • Miura K.
        • et al.
        Phase 1 vaccine trial of Pvs25H: a transmission blocking vaccine for Plasmodium vivax malaria.
        Vaccine. 2005; 23: 3131-3138
        • Wu Y.
        • Ellis R.D.
        • Shaffer D.
        • Fontes E.
        • Malkin E.M.
        • Mahanty S.
        • et al.
        Phase 1 trial of malaria transmission blocking vaccine candidates Pfs25 and Pvs25 formulated with montanide ISA 51.
        PLoS ONE. 2008; 3: e2636
        • Wu Y.
        • Przysiecki C.
        • Flanagan E.
        • Bello-Irizarry S.N.
        • Ionescu R.
        • Muratova O.
        • et al.
        Sustained high-titer antibody responses induced by conjugating a malarial vaccine candidate to outer-membrane protein complex.
        Proc Natl Acad Sci USA. 2006; 103: 18243-18248
        • Qian F.
        • Wu Y.
        • Muratova O.
        • Zhou H.
        • Dobrescu G.
        • Duggan P.
        • et al.
        Conjugating recombinant proteins to Pseudomonas aeruginosa ExoProtein A: a strategy for enhancing immunogenicity of malaria vaccine candidates.
        Vaccine. 2007; 25: 3923-3933
        • Shimp Jr, R.L.
        • Rowe C.
        • Reiter K.
        • Chen B.
        • Nguyen V.
        • Aebig J.
        • et al.
        Development of a Pfs25-EPA malaria transmission blocking vaccine as a chemically conjugated nanoparticle.
        Vaccine. 2013; 31: 2954-2962
        • Jones R.M.
        • Chichester J.A.
        • Mett V.
        • Jaje J.
        • Tottey S.
        • Manceva S.
        • et al.
        A plant-produced Pfs25 VLP malaria vaccine candidate induces persistent transmission blocking antibodies against Plasmodium falciparum in immunized mice.
        PLOS ONE. 2013; 8: e79538
      2. WHO. Malaria vaccine rainbow tables. Available from: http://www.who.int/vaccine_research/links/Rainbow/en/index.html [accessed 04.01.15].

        • Penny M.A.
        • Maire N.
        • Studer A.
        • Schapira A.
        • Smith T.A.
        What should vaccine developers ask? Simulation of the effectiveness of malaria vaccines.
        PLoS ONE. 2008; 3: e3193
        • Nunes J.K.
        • Woods C.
        • Carter T.
        • Raphael T.
        • Morin M.J.
        • Diallo D.
        • et al.
        Development of a transmission-blocking malaria vaccine: progress, challenges, and the path forward.
        Vaccine. 2014; 32: 5531-5539
        • Blagborough A.M.
        • Churcher T.S.
        • Upton L.M.
        • Ghani A.C.
        • Gething P.W.
        • Sinden R.E.
        Transmission-blocking interventions eliminate malaria from laboratory populations.
        Nat Commun. 2013; 4: 1812
        • Blagborough A.M.
        • Yoshida S.
        • Sattabongkot J.
        • Tsuboi T.
        • Sinden R.E.
        Intranasal and intramuscular immunization with Baculovirus dual expression system-based Ps25 vaccine substantially blocks Plasmodium vivax transmission.
        Vaccine. 2010; 28: 6014-6020